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Abstract
We present exact theoretical results about energetic and dynamic properties
of a spinless charged quantum particle on the Euclidean plane subjected to a
perpendicular random magnetic field of Gaussian type with non-zero mean.
Our results refer to the simplifying but remarkably illuminating limiting case
of an infinite correlation length along one direction and a finite but strictly
positive correlation length along the perpendicular direction in the plane.
They are therefore ‘random analogues’ of results first obtained by Iwatsuka
in 1985 and by Müller in 1992, which are greatly esteemed, in particular
for providing a basic understanding of transport properties in certain quasi-
two-dimensional semiconductor heterostructures subjected to non-random
inhomogeneous magnetic fields.

PACS numbers: 72.15.Gd, 72.20.My, 73.23.Ad, 75.47.Jn

Quantum-mechanical models for a single spinless electrically charged particle on the (infinitely
extended) Euclidean plane R

2 subjected to a perpendicular spatially random magnetic field
(RMF) have become a topic of growing interest over the last decade. Such models are
currently discussed in relation with magneto-transport properties of quasi-two-dimensional
semiconductor heterostructures with certain randomly built-in magnets [1–7]. Moreover, they
are part of effective theories for the fractional quantum Hall effect [8–10]. Just as in Anderson’s
model [11] of a quantum particle in a random scalar potential (and no or a constant magnetic
field)3, the fundamental question is to understand the spectral and transport properties of
the underlying Hilbert-space operator representing the (kinetic) energy and generating the
dynamics of the particle in a RMF. Until recently, different studies by perturbative, quasi-
classical, field-theoretical and numerical methods have given partially conflicting answers
[13–28].

3 For a recent survey of rigorous results in the case of continuum models see [12].
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Since ‘the power and utility of simple models can hardly be overestimated’ [30], the
purpose of this letter is to present first exact (de)localization results in case of simple, but
remarkably illuminating RMFs4. The simplification arises from the assumption that the
fluctuations of the RMF on R

2 = R × R are anisotropically long-ranged correlated in the
sense that we consider the limiting case of an infinite correlation length along one direction and
take the correlation length to be finite but strictly positive along the perpendicular direction
in the plane. In other words, we assume the RMF to be independent of one of the two
Cartesian co-ordinates, which we choose to be the second one, x2. The remaining dependence
of the RMF values on the first co-ordinate x1 we suppose to be governed by the realizations
b := {b(x1)}x1∈R of a homogeneous and ergodic real-valued random (or stochastic) process
with the real line R = ]−∞,∞[ as its parameter set [32]. We will assume throughout that its
mean b(0) is non-zero and finite,

0 <
∣∣ b(0)

∣∣ < ∞. (1)

Here the overbar denotes the probabilistic (or ensemble) average. Taking the (Lebesgue-)
integral a2(x1) := ∫ x1

0 dx ′
1b(x ′

1), which exists almost surely for all x1 ∈ R, as the second
component of the vector potential (0, a2(x1)) in the asymmetric gauge, the Hamiltonian (or
kinetic-energy operator) is then given as

H := 1
2

[
P 2

1 + (P2 − a2(Q1))
2
]

(2)

in terms of the two components of the usual canonical momentum and position operators,
P1, P2, respectively Q1, (Q2,) corresponding to the x1- and the x2-direction. All operators act
self-adjointly on the Hilbert space L2(R2) = L2(R) ⊗ L2(R) of square-integrable, complex-
valued functions on the plane R

2. For notational transparency we use physical units such that
Planck’s constant (divided by 2π ) and the particle’s mass and charge are all equal to 1.

Energetic properties. The nice feature of H is its translational invariance along the x2-direction
so that it commutes with P2, an operator which can be partially Fourier decomposed on L2(R2)

according to P2 = ∫ ∞
−∞ dk k11 ⊗ |k〉〈k| (using an informal notation). Therefore, H can be

decomposed according to

H =
∫ ∞

−∞
dk H(k) ⊗ |k〉〈k| (3)

into the one-parameter family

H(k) := 1
2

[
P 2

1 + (k11 − a2(Q1))
2
]
, k ∈ R, (4)

of effective (or fibre) Hamiltonians on the Hilbert space L2(R) for the one-dimensional motion
along the x1-direction. Here each wave number k ∈ R is a possible (spectral) value of the
particle’s canonical momentum along the x2-direction. For any typical realization b the
Birkhoff–Khinchin ergodic theorem [32, 33],

lim
|x1|→∞

a2(x1)

x1
= b(0) �= 0, (5)

ensures that the effective scalar potential entering H(k) confines the particle along the
x1-direction for large |x1| quadratically. As a consequence, for each fixed k ∈ R the operator
H(k) has purely discrete spectrum with strictly positive and non-degenerate eigenvalues
0 < ε0(k) < ε1(k) < . . . so that its spectral resolution reads

H(k) =
∞∑

n=0

εn(k)|ϕn(k)〉〈ϕn(k)| (6)

4 Reference [31] outlines a rigorous proof of the existence of localized states at low energies for certain RMFs on
the (infinite) square lattice Z

2 instead of the two-dimensional continuum R
2.
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with normalized and pairwise orthogonal eigenfunctions |ϕ0(k)〉, |ϕ1(k)〉, . . . spanning L2(R).
By (3) and (6) the spectrum of H is given by a set-theoretic union,

spec H =
∞⋃

n=0

βn, βn :=
[

inf
k∈R

εn(k), sup
k∈R

εn(k)
]
. (7)

Here the closed interval βn is the nth energy band. It is a subset of the positive half-line [0,∞[
and extends from the lower to the upper edge of the nth energy-band function εn. A further
important consequence of the assumed ergodicity is that, although the spectrum of H(k) for
fixed k ∈ R in general depends on b, each resulting energy band βn of H is non-random almost
surely, that is, the same for all typical b.

The random Hamiltonian H with the non-random energy-band structure of its spectrum is
a random variant of models first investigated in [34] and (non-rigorously) in the often quoted
paper [35]. By studying special non-random b these and other works [36–42] have illustrated
that a non-constant b has a tendency to delocalize the particle along the x2-direction. In fact,
according to classical mechanics a particle with non-zero kinetic energy wanders off to infinity
along snake or cycloid-like orbits winding around (straight) contours of constant magnetic
field [43, 35]. The quantum analogue of this unbounded motion should manifest itself in the
exclusive appearance of (absolutely) continuous spectrum of H, or equivalently, of only strictly
positive bandwidths, |βn| := supk∈R

εn(k)− infk∈R εn(k) > 0 for all n. While plausible from
the (quasi-)classical picture, the rigorous exclusion of flat energy bands is not trivial and
has been accomplished so far only for certain classes of non-constant5 but non-random b
[34, 37]. Our main theorem establishes for the first time such a result in the random case.

Theorem. If the RMF is given by a homogeneous Gaussian random process with its mean
b(0) obeying (1) and its covariance function

c(x1) := b(x1)b(0) − (b(0))2 (8)

fulfilling the following two requirements:

(i) c is continuous at the origin (and hence everywhere) with 0 < c(0) < ∞,
(ii) lim�→∞ �−1

∫ �

0 dx1(c(x1))
2 = 0,

then |βn| > 0 for all energy-band indices n and spec H = [0,∞[, almost surely.

Given our simplifying a priori assumption, the two requirements are both mathematically
mild and physically relevant. By the first one the RMF is neither non-random nor delta-
correlated and has realizations which are continuous in the mean-square sense. Because of
the Bochner–Khinchin [32, 33], the Fomin–Grenander–Mayurama [32, 33], and the Wiener
theorem [33, 43], the second requirement is then equivalent to the ergodicity of the underlying
Gaussian random process. In particular, (ii) requires that the correlation of the RMF’s
fluctuations at two different points in the plane exhibits some decay with increasing absolute
difference of their first co-ordinates. The simple condition lim|x1|→∞ c(x1) = 0 is sufficient
but not necessary.

The basic observation for the proof of the theorem is that (i) and (ii) ensure a non-zero
probability for the occurrence of realizations b with arbitrarily small absolute values on spatial
average over arbitrarily long line segments, that is

Prob

{∫ �

−�

dx1|b(x1| < δ

}
> 0 (9)

5 In the constant case, that is, b(x1) = b0 for all x1 ∈ R with some constant b0 �= 0, each eigenvalue of H(k) is
independent of k ∈ R and given by a Landau level [44, 45], εn(k) = (n + 1/2)|b0|, so that |βn| = 0 for all n.
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for all � > 0 and all δ > 0. Such realizations, although rare because of b(0) �= 0, come
with nearly free motion. More precisely, for any (arbitrarily small) energy ε > 0 and any
(arbitrarily large) integer n0 � 0 there occur realizations such that the effective Hamiltonian
H(0) has n0 + 1 eigenvalues strictly smaller than ε. Thanks to the non-randomness of each
βn, this rules out a flat energy band of H at ε. Otherwise the number of eigenvalues of H(0)

below ε would be uniformly bounded in the randomness. By a similar argument the almost-
sure (purely absolutely continuous) spectrum of H is seen to coincide with the entire positive
half-line.

Dynamic properties. As suggested by the (quasi-)classical picture, the non-existence of
flat energy bands as supplied by the theorem should come with ballistic transport along the
x2-direction. To prepare a precise statement, we temporarily return to a typical realization
b of a general ergodic random process obeying (1). Then (3) and (6) imply that any
normalized wave packet |ψ0〉 in L2(R2) with almost surely finite (time-invariant) kinetic
energy, 〈ψ0|H |ψ0〉 < ∞, and (initial) localization along the x2-direction in the sense that
〈ψ0|Q2

2|ψ0〉 < ∞, has an asymptotic velocity in the sense that the following (strong) long-
time-limit relation holds6:

lim
t→∞ t−1 eitH Q2 e−itH |ψ0〉 = V2,∞|ψ0〉. (10)

Here the (random) asymptotic velocity operator

V2,∞ :=
∫ ∞

−∞
dk V2,∞(k) ⊗ |k〉〈k| (11)

on L2(R2) is related to the derivatives of the energy-band functions similarly as in the quantum
theory of single electrons in perfect crystals (without external fields) [48],

V2,∞(k) :=
∞∑

n=0

dεn(k)

dk
|ϕn(k)〉〈ϕn(k)|, k ∈ R. (12)

If the energy band βn is not flat, |βn| > 0, the (random) group velocity dεn(k)/dk vanishes
at most at countably many k ∈ R, because εn(k) is an analytic function of k, almost surely.
Moreover, by the Feynman–Hellmann theorem, the positivity of the quantum-mechanical
variance and the strict inequality 〈ϕn(k)|P 2

1 |ϕn(k)〉 > 0, equations (4) and (6) give the upper
estimate (dεn(k)/dk)2 < 2εn(k) (cf [37]). Taken together, this proves the

Corollary. Under the assumptions of the theorem the particle’s motion along the x2-direction
is ballistic in the sense that (10) holds with 0 < 〈ψ0|V 2

2,∞|ψ0〉 < 2〈ψ0|H |ψ0〉 < ∞, almost
surely.

In contrast, the particle’s motion along the x1-direction is bounded. Indeed, for a typical
realization b of a general ergodic random process obeying (1) the quadratic confinement of
the particle along the x1-direction for large |x1| (cf (5)) implies that any normalized wave
packet |ψ0〉 in L2(R2) with almost surely finite kinetic energy and (initial) localization along
the x1-direction in the sense that 〈ψ0|Q2

1|ψ0〉 < ∞, remains localized in the course of time,

sup
t∈R

〈ψ0| eitH Q2
1 e−itH |ψ0〉 < ∞. (13)

6 The rigorous derivation of (10) is based on the integral form of the Heisenberg equation of motion for eitH Q2 e−itH .
It is similar to that of the corresponding statement for motion in a periodic scalar potential in [46]. For details
see [47].
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Concluding remarks. Bounds on the Lifshits tail, that is, on the low-energy asymptotics of the
integrated density of states have been derived in [49] under the assumptions of the theorem
(but allowing for b(0) = 0).

For further details, complete proofs, and non-Gaussian RMFs obeying (1) and (9) and
hence yielding almost surely purely continuous energy spectrum and ballistic transport along
the x2-direction, we refer to [47].

Acknowledgments

We are indebted to Ludwig Schweitzer (Braunschweig, Germany) for hints to the literature.
This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG) under
grant nos Le 330/12 and Wa 1699/1.

References

[1] Geim A K, Bending S J, Grigorieva I V and Blamire M G 1994 Phys. Rev. B 49 5749
[2] Smith A, Taboryski R, Hansen L T, Sørensen C B, Hedegård P and Lindelof P E 1994 Phys. Rev. B 50 R14726
[3] Mancoff F B, Clarke R M, Marcus C M, Zhang S C, Campman K and Gossard A C 1995 Phys. Rev. B 51 13269
[4] Ando M, Endo A, Katsumoto S and Iye Y 2000 Physica B 284–288 1900
[5] Rushforth A W, Gallagher B L, Main P C, Neumann A C, Marrows C H, Zoller I, Howson M A, Hickey B J

and Henini M 2000 Physica E 6 751
[6] Bykov A A, Gusev G M, Leite J R, Bakarov A K, Goran A V, Kudryashev V M and Toropov A I 2002 Phys.

Rev. B 65 035302
[7] Rushforth A W, Gallagher B L, Main P C, Neumann A C, Henini M, Marrows C H and Hickey B J 2004 Phys.

Rev. B 70 193313
[8] Heinonen O (ed) 1998 Composite Fermions 2nd edn (Singapore: World Scientific)
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